
COLLEGE OF BIOMEDICAL AND TRANSLATIONAL SCIENCES

Cell Biology, Immunology & Microbiology Discipline Handbook 2025-2026

Regardless of the discipline, each CBTS student (MS or PhD) will receive the degree of Biomedical Sciences. The discipline is listed on the transcript as the Major.

The information provided in this document serves to supplement the requirements of the College of Biomedical and Translational Sciences detailed in the UNT Health Fort Worth Catalog with requirements specific to the discipline of Cell Biology, Immunology & Microbiology.

Table of Contents

	Page
Description of the Cell Biology, Immunology & Microbiology Discipline.....	3
Graduate Faculty and Their Research	4
Requirements	10
I. Required Courses	10
II. Journal Club and Seminar Courses	10
III. Elective Courses.....	10
Sample Degree Plans	11
I. Master of Science (MS) Degree Plan.....	11
II. Doctor of Philosophy (PhD) Degree Plan.....	12
Academic Procedures	15
Advancement to Candidacy	15
I. Master of Science (MS)	15
II. Doctor of Philosophy (PhD).....	15
A. Oral Qualifying Examination (OQE).....	15
B. Research Proposal	16

Cell Biology, Immunology & Microbiology Discipline

Sterling Ortega, PhD, Graduate Advisor

office: CBH 360

Phone: 817-735-5657

Email: Sterling.Ortega@unthsc.edu

Discipline website: <https://www.unthsc.edu/school-of-biomedical-sciences/cell-biology-immunology-and-microbiology/>

Graduate Faculty: Allen, Basha, Berg, Bunnell, Hodge, Hu, Jones, Krishnamoorthy, P. Mathew, S. Mathew, Ortega, Park, Sankpal, Simecka, Vishwanatha, Woerner, Zhang, Zascavage

Cell biology is the branch of biology that focuses on the study of cells, especially their formation, structure, components, and function. Immunology is the study of the defense mechanisms of the host against infectious diseases, cancers, and other diseases. Microbiology is the study of microscopic forms of life, including bacteria, viruses, protozoans, and fungi. The disciplines of cell biology, immunology, and microbiology are uniquely intertwined and rely on cutting-edge techniques to answer questions related to multiple diseases. Gaining a thorough understanding of the molecular and cellular mechanisms used by the body to combat infectious diseases and other pathologies can result in the development of therapeutic approaches to prevent and cure these diseases.

Specific research interests of the cell biology, immunology, and microbiology faculty include neuroinflammation, HIV-1 and SARS-CoV-2 biology, stem cell biology, regulation of eukaryotic gene expression, T cell and NK cell biology, host response to infections, molecular immunology, tumor immunology, cytokine biology, and molecular diagnostics for emerging vector-borne pathogens. Faculty programs are funded by multiple sources, including the federal government, state government, and private foundations.

The Cell Biology, Immunology & Microbiology graduate training program, culminating in either a M.S. or Ph.D. degree, involves core courses that integrate key concepts of biochemistry, cell biology, molecular biology, genetics, physiology, pharmacology, immunology, and microbiology, as well as advanced courses in selected topics. Students participate in seminars and discussions of current research and receive extensive training in techniques of contemporary molecular biology, cell biology, immunology, and microbiology. Students perform original, publishable research and present their research findings at local, national, and international scientific meetings. In addition, students are required to present their research at the annual HSC Research Appreciation Day (RAD) and in the Departmental Seminars in Microbiology, Immunology, and Genetics series each year. Approximately two years are required to complete the MS degree, while the PhD degree is normally completed in approximately five years.

Graduates with advanced degrees typically find employment in higher education, industry, and government agencies.

Cell Biology, Immunology & Microbiology Graduate Faculty and Their Research

Graduate Faculty Membership Categories: Associate members of the Graduate Faculty are able to serve as members of thesis or dissertation advisory committees, as major professors or co-major professors on thesis advisory committees, and as co-major professors on dissertation advisory committees with a full member as the other co-major professor. Full members of the Graduate Faculty are able to serve as members of thesis or dissertation advisory committees, and as major professors or co-major professors on thesis or dissertation advisory committees.

Michael Allen, Ph.D.

Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/michael-allen>

Our research focuses on understanding the ecological principles and factors that underlie microbial community dynamics in living and engineered systems, the mechanisms bacteria use for sensing changes in their environment, and the global genetic regulatory systems involved in adaptation. Specific areas of interest include: the microbiomes of ticks and other vectors and how this influences disease transmission, methods to manipulate microbial community composition, pathogenicity and virulence of *Borrelia burgdorferi*, genetically engineered microbes and bacteriophage as therapeutic treatments, and applications of microbial community analysis in tracking pathogens and antibiotic resistance genes in the environment.

Riyaz Basha, Ph.D.

Professor and Vice Chair for Research, Pediatrics & Women's Health

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/riyaz-basha>

Dr. Basha's research in experimental therapeutics focuses on understanding functional changes at the cellular and molecular levels. His lab targets c-Met (a receptor for hepatocyte growth factor), the Specificity protein 1 (Sp1) transcription factor, and survivin (also known as baculoviral inhibitor of apoptosis repeat-containing 5 or BIRC5), an anti-apoptotic protein, to enhance therapeutic efficacy in cancer. His team is testing investigational agents capable of targeting these markers, focusing on strategies to improve therapeutic efficacy in breast cancer, Ewing sarcoma, hepatocellular carcinoma, ovarian, and pancreatic cancers, using preclinical models and clinical specimens. By employing investigational agents with immune-targeting potential, his team seeks to test strategies that disrupt tumor growth, stimulate anti-tumor immunity, and reduce immune suppression within the tumor microenvironment. This approach aims to uncover specific immune signatures and genetic factors that drive individualized responses, ultimately enhancing therapeutic efficacy and patient outcomes.

Rance Berg, Ph.D.

Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/rance-berg>

My laboratory has a long-standing interest in understanding the cellular and molecular aspects of immune responses against pathogenic microorganisms. Specifically, the gram-positive bacterium *Listeria monocytogenes* is utilized to dissect the roles of T cells, NK cells, NK-T cells, dendritic cells, monocytes, neutrophils, and macrophages during the innate and adaptive immune responses to this pathogen. Elucidating the proliferative capacity, cytokine/chemokine secreting potential, localization, and ultimate fate of these and other immune effector cells allows us to understand how the immune system coordinately responds to and controls pathogens. We are also actively studying how cytokine/chemokine networks, oxidative stress, and enzymes that regulate the production of reactive oxygen and nitrogen species modulate immune responses and clearance of pathogens.

Bruce Bunnell, Ph.D.

Professor and Chair, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/bruce-bunnell>

Dr. Bunnell's research program is focused on stem cells and tissue engineering. His group focuses on both the basic science and translational applications of adult stem cells. Dr. Bunnell investigates use of mesenchymal stem cells (MSCs) isolated from the bone marrow or adipose tissue. He is particularly interested in the interactions of MSCs with the immune system and how the cells effectively inhibit robust inflammation *in vivo*. He is also working on the impact of biologic aging and obesity on the quality of the stem cell populations. His research group has determined that communication between ASCs from obese donors and breast cancer cells induces alterations in the cancer cells to make them more tumorigenic and metastatic. With regard to tissue engineering, Dr. Bunnell's group is collaborating on the development, testing and application of a microphysiologic model of the osteoarthritic human knee, which is composed of bone, cartilage, adipose tissue, immune cells and synovium. This *in vitro* physiologic model has applications in understanding disease processes and drug screening.

Kejin Hu, Ph.D.

Associate Professor, Microbiology, Immunology, and Genetics

Graduate Faculty full member

<https://experts.unthsc.edu/en/persons/kejin-hu>

Dr. Kejin Hu's lab studies molecular mechanisms of human pluripotency and pluripotency reprogramming. Pluripotency is the unique differentiation potential of human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). PSCs have unlimited proliferation and the potential to become any type of cell in our body. Thus, PSCs are unlimited resources for cell therapy, disease modeling, drug screening, and biotechnology. Pluripotency reprogramming is the technology to convert various human somatic cells back to PSCs. The second line of research in Hu's lab is the roles of bromodomain and extra-terminal (BET) proteins in inflammation, which is a contributing factor to many human diseases. BET proteins are epigenetic readers due to their ability to bind to the acetylated lysine in histones. His lab uses conditional KO mouse models to study BET roles in neural and heart inflammation. Hu lab also uses human iPSC-derived cell models to study BET roles in human neural inflammation.

Harlan Jones, Ph.D.

Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/harlan-jones>

There is increasing evidence that psychological stress is an important risk factor in the initiation and progression of chronic disease (e.g., cancer, atherosclerosis, and chronic infectious disease). My research interests include the investigation of how stress affects host immune mediation of chronic disease states with the intention of facilitating comprehensive therapeutic approaches against stress-induced disease pathogenesis.

Raghu Krishnamoorthy, Ph.D.

Professor, Pharmacology & Neuroscience

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/raghu-krishnamoorthy>

The major research emphasis is on understanding biochemical and molecular mechanisms underlying the etiology of glaucoma. Specific research interests are to understand the regulation of expression of the vasoactive active peptides, endothelins, and their receptors, which are thought to contribute to glaucomatous optic neuropathy. The long-term goals are to provide treatment modalities that block inappropriate expression of endothelin receptors in ocular tissues.

Porunelloor Mathew, Ph.D.

Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/porunelloor-mathew>

My laboratory focuses on the area of Cancer Immunology, specifically the molecular mechanisms by which Natural Killer (NK) cells recognize and eliminate cancer cells. NK cells are a subpopulation of lymphocytes that play an important role against cancer and various viral and bacterial infections. NK cell functions are controlled by a balance between positive and negative signals through various receptors. In order to understand the molecular basis of tumor cell recognition by NK cells, we identified, cloned and characterized three novel receptors expressed on NK cells. One of the receptors, 2B4 (CD244), is a member of the immunoglobulin superfamily and is involved in killing cancer cells and virus-infected cells by NK cells. By generating 2B4 gene knockout mice, our group explored the in vivo role of 2B4 in the immune system. Defective signaling via 2B4 contributes to X-linked lymphoproliferative disease (XLP) in humans. Dr. Mathew also identified two other novel receptors called LLT1 and CS1 (CD319) that play a role in the killing of cancer cells by NK cells. CS1 is overexpressed in multiple myeloma and a humanized monoclonal antibody against CS1 (Elotuzumab or Empliciti) has been approved as a breakthrough drug for the treatment of multiple myeloma. Dr. Mathew's research has opened new NK cell based targeted immunotherapy for cancer. We are also investigating the role of 2B4 and CS1 in autoimmune disease. Current research focuses on Cancer Stem Cells and the role of LLT1 and PCNA in immune escape in breast cancer, prostate cancer, and pancreatic cancer.

Stephen Mathew, Ph.D.

Associate Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/stephen-mathew>

Dr. Stephen Mathew's research focuses on understanding the role of natural killer (NK) cell receptors in different disease models like cancer and lupus. Natural killer (NK) cells are cells of the immune system that form the first line of defense against cancer and infectious diseases. The research in his laboratory is focused towards unraveling the molecular basis of tumor cell recognition by NK cells and its multiple receptor-ligand interactions. Specifically, in collaboration with pediatric oncologists and basic science researchers, the research team is investigating the role of immune receptors in acute lymphoblastic leukemia (ALL) in children. This will provide important insights into the etiology of childhood leukemia as well as the development of new treatments that may improve the outcome of children with leukemia by modifying the function of immune cells in these patients. The other projects in the laboratory deal with deciphering the role of immune receptors 2B4, CS1, and LLT1 in prostate cancer, breast cancer, Ewing sarcoma, and lupus.

Sterling Ortega, Ph.D.

Assistant Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/sterling-ortega>

The overarching theme of my research program is to discover novel therapeutics that can reverse immune-mediated neurological dysfunction. In line with this focus, my lab studies two debilitating neurological diseases. Stroke, which is caused by the loss of blood flow to the brain, results in neurological injury and inflammation. There is a dynamic interaction between the adaptive immune system and the injured ischemic brain. Our investigations characterize how CD8 T-cells modulate neuropathology and neurorecovery. Self-reactive, neuronal GluN2A-reactive CD8 T-cells produce both interferon-gamma and tumor necrosis factor-beta, which are highly inflammatory cytokines. The immuno-biology of CD8 T-cells makes them perfect harbingers of neuropathology. In parallel, we study the role of neuroprotective myelin-specific CD8 T-cells in a mouse model of Multiple Sclerosis (MS). We have demonstrated that myelin-reactive CD8 T-cells can robustly reverse disease through interferon-gamma production. Investigating CD8 T-cell-associated neuroimmune mechanisms that potentiate pathological & direct reparative processes in the brain is a novel, translational approach to treating neurological disease.

In-Woo Park, Ph.D.

Associate Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/inwoo-park>

Dr. Park's research focuses on two main topics. The first is HIV-1-mediated aggravation of liver disease in HCV co-infectees. While this basic phenomenon is well documented, the laboratory now wishes to unravel the specific mechanisms by which HIV-1 augments HCV replication in accelerating hepatic malady. The second topic, which is critical to AIDS pathobiology, is the HIV-1- triggered virus/cell protein degradation that occurs at all phases, from virus entry to progeny virion release. The laboratory is currently applying a range of molecular studies to identify and evaluate the coordinated viral/host determinants that orchestrate protein fates.

Umesh Sankpal, Ph.D.

Assistant Professor, Pediatrics & Women's Health / Microbiology, Immunology & Genetics

Graduate Faculty Associate Member

<https://experts.unthsc.edu/en/persons/umesh-sankpal>

Dr. Sankpal's research is focused on translational cancer research with two specific areas of interest: (i) developing innovative approaches for cancer treatment and (ii) identifying diagnostic/prognostic markers for cancer. The strategy for the first project involves identifying novel anti-cancer compounds that target cancer-specific genes and work synergistically with the standard treatments of chemotherapy and radiation. Various cell-based assays, gene expression analyses, and animal models are used to evaluate the underlying molecular mechanism of action and design combination therapies. The second project uses immunohistochemical analysis of breast tumor tissue and analysis of tumor-derived exosomes to evaluate potential factors associated with breast cancer that correlate with various clinical-pathological characteristics. The goal is to address the disparity in mortality rates between racial groups by using differentially expressed markers for diagnosis/prognosis or as therapeutic targets.

Jerry Simecka, Ph.D.

Regents Professor, Pharmaceutical Sciences

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/jerry-simecka>

The major goal of our laboratory is to understand the immune mechanisms involved in respiratory diseases. Immune responses along the respiratory tract have both beneficial and detrimental effects. Immune responses can protect against infectious disease by preventing infection or by eliminating disease-causing bacteria or viruses. However, in some cases, the immune response can contribute to the problem. This is the case for infectious diseases and asthma. We are taking advantage of a murine model of respiratory pneumonia caused by mycoplasma to study the generation of immunity that leads to either protection or more severe disease. Mycoplasmas are major causes of pneumonia in man and animals. The immune response against a mycoplasma infection has both beneficial and detrimental effects. We have shown that immune responses, through the activity of T cells, clearly promote the development of inflammatory reactions leading to severe mycoplasma lung disease. However, immune responses can also prevent disease and ensure that the infection remains localized to the lung. Our work focuses on the role of T cell populations, antigen-presenting cell populations, and cytokine networks in determining the impact of immunity in mycoplasma disease.

Jamboor K. Vishwanatha, Ph.D.

Regents Professor, Microbiology, Immunology & Genetics

Graduate Faculty Full Member

<https://experts.unthsc.edu/en/persons/jamboor-vishwanatha>

Dr. Vishwanatha's research is in cancer molecular biology and experimental therapeutics. His laboratory has established the role of Annexin A2 in extracellular matrix (ECM) degradation and angiogenesis. They identified the function of a novel gene C17orf37 in cancer cell migration and invasion that resulted in a new nomenclature of the gene as migration and invasion enhancer 1 (MIEN1). Their current studies have established Annexin A2 as a novel biomarker for triple negative breast cancer. In other projects, his laboratory has developed sustained-release polymeric nanoparticles for targeted delivery of biologicals for cancer therapy. 2) Prostate cancer,

molecular markers for progression of oral dysplasia, biological response modifiers, nanoparticle-mediated gene delivery.

August Woerner, Ph.D.

Assistant Professor, Microbiology, Immunology & Genetics

Graduate Faculty Associate Member

<https://experts.unthsc.edu/en/persons/august-woerner>

My research is in the areas of bioinformatics, population genetics, and genomics. My research team's active projects are highly varied, though most relate to forensic genetics and computation. Our recent research includes special topics in microbial forensics, proteomics, and whole genome mixture deconvolution. Most of our research is either method-focused, where we introduce new algorithms or approaches (including machine learning methods) to help answer important questions in forensic genetics and genomics, or it is data-focused, where we leverage data science techniques to help characterize, visualize and better understand "big data". Often, these two scientific perspectives build on each other; we learn (and/or train algorithms to learn) from large datasets, and we use this information to create better and more powerful inferential tools and techniques.

Roxanne Zascavage, Ph.D.

Associate Professor, Microbiology, Immunology & Genetics

Graduate Faculty Associate Member

<https://experts.unthsc.edu/en/persons/roxanne-zascavage>

My research focuses on the generation of improved protocols and processes for genetic analyses in various fields. I work on developing novel forensic applications, including microbial community interrogation for forensically relevant information (geolocation, PMI, etc.) and next-generation sequencing-based human identification, as well as qPCR-based microbial analysis for vector carrying pathogens. Additionally, I am interested in the impact of mitochondrial DNA on health and aging, especially the cyto-nuclear interactions that contribute to late-onset diseases.

Yan Zhang, Ph.D.

Assistant Professor, Microbiology, Immunology & Genetics

Graduate Faculty Associate Member

<https://experts.unthsc.edu/en/persons/yan-zhang>

My interest is how the microbiome and host interact in health and disease. My research aims to understand the role of the microbiome in disease development (such as tick-borne disease, phenylketonuria, Alzheimer's disease, inflammation after severe injury, etc.). Our projects include tick microbiomes and disease-associated human microbiomes using genomic and metagenomic approaches to investigate the microbial community dynamics. We also provide services for Next Generation Sequencing (MiSeq) and develop bioinformatics and statistical tools for metagenomic analysis.

Requirements

The requirements below are in addition to the CBTS requirements listed in the [CBTS Degree Programs](#) chapter of the [UNTHSC Catalog](#). Additional guidance, forms and evaluation rubrics can be found at the [CBTS Forms and Guidelines website](#).

I. DISCIPLINE REQUIRED COURSES

Advanced Immunology (MIMG 6201) – 2 SCH

Fundamentals of Microbiology (MIMG 6202) – 2 SCH

Advanced Cell Biology (MIMG 6203) – 2 SCH

- A PhD student who receives “C’s” or lower in any discipline-specific required course (MIMG 6201, MIMG 6202, or MIMG 6203) must retake the course(s) in their entirety prior to taking the oral qualifying exam. If the PhD student receives “A’s” and/or “B’s” upon retaking the course(s), they will be allowed to take the oral qualifying exam.

II. SEMINAR COURSES, JOURNAL CLUB COURSES, AND WIPs

Seminars in Microbiology, Immunology & Genetics (MIMG 5140) – 1 SCH

Journal Club in Immunology (MIMG 5122) – 1 SCH

Journal Club in Cell Biology (MIMG 6141) – 1 SCH

Journal Club in Microbiology (MIMG 5180) – 1 SCH

- All CBIM students are required to register for a journal club course during every long semester beginning in the fall of year 2. MS and PhD students are not required to register for a journal club course during the semester in which they intend to defend.
- All CBIM students are required to present their research in Seminars in Microbiology, Immunology & Genetics, also known as “Works in Progress or WIPs,” once per year beginning in their second year.

III. ELECTIVE (ADVANCED AND TECHNIQUE) COURSES

Must include: 4-6 SCH for MS Students and 8-10 SCH for PhD students from the following (other courses can be substituted according to the research project of the student)

Offered in the fall:

Mitochondria and Complex Disease (MIMG/PHRM 6200) - 2 SCH

Immune Responses Against Pathogenic Microorganisms (MIMG 6204) - 2 SCH

Fundamentals of Virology (MIMG 6205) - 2 SCH

Advanced Molecular Biology: Techniques and Principles (MIMG 6206) - 2 SCH

Animal Models of Immunological Diseases (MIMG 6207) - 2 SCH

Receptors and Second Messenger Signaling (MIMG 6435) - 2 SCH

Kinases and Phosphatases (MIMG 6436) - 2 SCH

Histology (PHAN 5400) - 2 SCH

Offered in the spring:

Emerging Role of the Microbiome in Health and Disease (MIMG 5500) - 2 SCH

Molecular and Cell Biology of Cancer (MIMG 6250) - 2 SCH

Offered in the summer:

Introduction to Flow Cytometry (MIMG 5150) - 1 SCH

Methods in Molecular Biology (PHRM 6440) - 4 SCH

IV. GRADES

A student who receives a single “C” in BMSC 6201, BMSC 6202, BMSC 6203, or BMSC 6204, but maintains an overall GPA of 3.0 or better after the first semester will be allowed to enter the Cell Biology, Immunology & Microbiology Discipline and enroll in MIMG 6201, MIMG 6202, and MIMG 6203.

SAMPLE DEGREE PLANS

I. **Master of Science (MS) Degree Plan** – The sample below does not imply that all requirements for graduation will be met with 30 SCH of course work. While it is possible to complete the requirements in this time frame, most research projects require additional semesters to complete, as shown below. The typical time-to-degree for MS students is two years.

Dept	Course Number	Title	SCH	Semester to be Completed
BMSC	5150	Lab Rotations	2	Fall year 1
BMSC	6200	Experimental Design & Biostatistical Methods	2	Fall year 1
BMSC	6201	Fundamentals of Biomedical Science I	2	Fall year 1
BMSC	6202	Fundamentals of Biomedical Science II	2	Fall year 1
BMSC	6203	Fundamentals of Biomedical Science III	2	Fall year 1
BMSC	6204	Fundamentals of Biomedical Science IV	2	Fall year 1
		<i>Subtotal</i>	<i>12</i>	

Milestones to be completed: Selection of Major Professor, Change of Discipline

BMSC	5160	Biomedical Ethics	1	Spring year 1
BMSC	5998	Individual Research for MS students	3	Spring year 1
MIMG	5140	Seminars in Micro, Immuno & Genetics	1	Spring year 1
MIMG	6201	Advanced Immunology	2	Spring year 1
MIMG	6202	Fundamentals of Microbiology	2	Spring year 1
MIMG	6203	Advanced Cell Biology	2	Spring year 1
		Journal Club Course	1	Spring year 1
		<i>Subtotal</i>	<i>12</i>	

Milestones to be completed: Designation of Advisory Committee, Degree Plan, Annual Progress Report. The Research Proposal must be filed prior to enrollment in Thesis (BMSC 5395).

BMSC	5108	Transferable Skills	1	Summer year 1
BMSC	5998	Individual Research for MS students	3-6	Summer year 1
		Advanced Courses	0-3	Summer year 1
		<i>Subtotal</i>	<i>6</i>	

BMSC	5998	Individual Research for MS students	3-6	Fall year 2
		Advanced Courses	0-3	Fall year 2
		Journal Club Course	1	Fall year 2
		Subtotal	12	

BMSC	5395	Thesis	3-6	Spring year 2
BMSC	5998	Individual Research for MS students	3-6	Spring year 2
BMSC	5215	Principles of Scientific Communication	2	Spring year 2
		Advanced Courses	0-3	Spring year 2
		Subtotal	12	

Milestones to be completed: Annual Progress Report, Presentations at RAD and Department Seminar (WIP)

	Total for Degree (30 minimum)	54
<ul style="list-style-type: none"> • Between 1-6 SCH Research hours can be applied to the 30 SCH degree total • Up to 3 SCH Thesis hours can be applied to the 30 SCH degree total • Between 4-6 SCH elective advanced discipline courses are required in the 30 SCH degree total • Additional SCH of research, thesis and advanced course hours can be taken. 		

Additional guidance, forms and evaluation rubrics for milestones can be found at [CBTS Forms and Guidelines website](#).

II. **Doctor of Philosophy (PhD) Degree Plan** - The sample below does not imply that all requirements for graduation will be met with 90 SCH of coursework. The degree plan must include 8-10 SCH of elective advanced courses from the discipline. While it is possible to complete the requirements in this time frame, most research projects require additional semesters to complete. The typical time-to-degree for PhD students is approximately five years.

Dept	Course Number	Title	SCH	Semester to be Completed
BMSC	6150	Lab Rotations	2	Fall year 1
BMSC	6200	Experimental Design & Biostatistical Methods	2	Fall year 1
BMSC	6201	Fundamentals of Biomedical Science I	2	Fall year 1
BMSC	6202	Fundamentals of Biomedical Science II	2	Fall year 1
BMSC	6203	Fundamentals of Biomedical Science III	2	Fall year 1
BMSC	6204	Fundamentals of Biomedical Science IV	2	Fall year 1
		Subtotal	12	

Milestones to be completed: Selection of Major Professor, Change of Discipline

BMSC	5160	Biomedical Ethics	1	Spring year 1
BMSC	6998	Individual Research for PhD students	4	Spring year 1
MIMG	5140	Seminars in Micro, Immuno & Genetics	1	Spring year 1
MIMG	6201	Advanced Immunology	2	Spring year 1
MIMG	6202	Fundamentals of Microbiology	2	Spring year 1
MIMG	6203	Advanced Cell Biology	2	Spring year 1
		Subtotal	12	

Milestones to be completed: Designation of Advisory Committee, Degree Plan

BMSC	5108	Transferable Skills	1	Summer year 1
BMSC	6998	Individual Research for PhD students	2-6	Summer year 1
		Advanced Courses	0-4	Summer year 1
		Subtotal	6	

Milestones to be completed: Oral Qualifying Examination, Annual Progress Report

BMSC	6998	Individual Research for PhD students	4-7	Fall year 2
MIMG	5140	Seminars in Micro, Immuno & Genetics	1	Fall year 2
BMSC	6102	Grant Writing	1	Fall year 2
		Journal Club Course	1	Fall year 2
		Advanced Courses	2-6	Fall year 2
		Subtotal	12	

BMSC	6998	Individual Research for PhD students	1-5	Spring year 2
MIMG	5140	Seminars in Micro, Immuno & Genetics	1	Spring year 2
BMSC	5215	Principles of Scientific Communication	2	Spring year 2
		Journal Club Course	1	Spring year 2
		Advanced Courses	2-6	Spring year 2
		Subtotal	12	

BMSC	6101	Responsible Conduct of Research	1	Summer year 2
BMSC	6998	Individual Research for PhD students	2-5	Summer year 2
		Advanced Courses	1-4	Summer year 2
		Subtotal	6	

Milestones to be completed: Research Proposal defense & approval, Student must enroll in a minimum of 2 SCH of Doctoral Dissertation once Research Proposal is approved, Annual Progress Report, Presentations at RAD and Department Seminar (WIP)

BMSC	6395	Doctoral Dissertation	2-3	Fall year 3
		Journal Club Course	1	Fall year 3
		Advanced Courses/MIG Seminar	2-3	Fall year 3
		Subtotal	6	

BMSC	6395	Doctoral Dissertation	2-3	Spring year 3
		Journal Club Course	1	Spring year 3
		Advanced Courses/MIG Seminar	2-3	Spring year 3
		Subtotal	6	

BMSC	6395	Doctoral Dissertation	2-5	Summer year 3
		Advanced Courses	1-4	Summer year 3
		Subtotal	6	

Milestone to be completed: Annual Progress Report, Presentations at RAD and Department Seminar (WIP)

BMSC	6395	Doctoral Dissertation	2-3	Fall year 4
		Journal Club Course	1	Fall year 4
		Advanced Courses/MIG Seminar	2-3	Fall year 4

		<i>Subtotal</i>	6	
--	--	------------------------	----------	--

BMSC	6395	Doctoral Dissertation	2-3	Spring year 4
		Journal Club Course	1	Spring year 4
		Advanced Courses/MIG Seminar	2-3	Spring year 4
		<i>Subtotal</i>	6	

BMSC	6395	Doctoral Dissertation	3	Summer year 4
		<i>Subtotal</i>	3	

Milestone to be completed: Annual Progress Report, Presentations at RAD and Department Seminar (WIP)

	<i>Total for Degree (minimum 90)</i>	93	
--	---	-----------	--

- ***Between 6-20 SCH Research hours can be applied to the 90 SCH degree total***
- ***Between 6-30 SCH Dissertation hours can be applied to the 90 SCH degree total***
- ***Between 8-10 SCH elective advanced discipline course work are required in the 90 SCH degree total***
- ***Additional SCH of research, dissertation and advanced course hours can be taken. They will count toward the maximum 130 SCH permitted with in-state tuition.***

Additional guidance, forms, and evaluation rubrics for milestones can be found on the [CBTS Forms and Guidelines website](#).

Academic Procedures

For additional information regarding Academic Procedures, please refer to the College of Biomedical and Translational Sciences Catalog at [Academic Procedures \(CBTS\)](#).

Advancement to Candidacy

I. Master of Science

Advancement to Master's Candidacy is achieved after successful completion of a research proposal.

The research proposal is a detailed outline of the thesis project. It must include a summary of the proposed project, the hypothesis and aims to be investigated, the significance and innovation of the project, research design and methodology to be used, a review of the salient literature that supports or opposes the hypothesis, and potential limitations. To take advantage of the advisory committee's expertise and advice, and to clearly define the project and the committee's expectations, it is imperative that the student meets with his/her advisory committee before preparing the research proposal. **The research proposal should be provided to the advisory committee no later than 14 days prior to the defense.** The formal presentation and defense of the research proposal will only be to the members of the student's advisory committee. The research proposal must be approved by the advisory committee and the Dean prior to registering for Thesis (BMSC 5395). It is expected that M.S. students will complete their Research Proposal in the Fall of year 2. Research Proposal Procedures, Evaluation Rubrics and Notice of Research Proposal Seminar and Defense are available on the [CBTS Forms and Guidelines website](#).

Once a master's student has successfully advanced to candidacy, they may use "MS Candidate" as a title on any general business correspondence such as business cards, e-mail messages, etc.

II. Doctor of Philosophy

Advancement to Doctoral Candidacy is a two-step process. The first step of this process is the successful completion of the Oral Qualifying Examination (OQE), a common milestone in most doctoral programs regardless of the field of study. The second step of this process is the preparation and defense of a research proposal. Below are details of the Cell Biology, Immunology & Microbiology Discipline for advancing to candidacy.

A. Oral Qualifying Examination

The qualifying examination ensures that the doctoral student has mastered the information needed to succeed as a PhD in the fields of Cell Biology, Immunology, and Microbiology. The graduate advisor will distribute a list of key topics to the student at least 3 months prior to the qualifying examination. The student is expected to become knowledgeable in each of these topics through their previous coursework, reading of textbooks and scientific literature, and discussion with faculty members.

The qualifying examination is administered by a committee comprised of members of the Cell Biology, Immunology & Microbiology graduate faculty and the student's university member. The student will be provided the committee roster at least two weeks prior to the exam. The committee is established by the Cell Biology, Immunology & Microbiology graduate advisor. The committee is typically comprised of faculty members who taught in the advanced core courses and develop

the exam questions as a committee. The graduate advisor will chair the committee, unless the advisor serves as the major professor for the student taking the oral qualifying exam. In such a case, an alternate chair will be appointed by the graduate advisor. The student's major professor may not attend the qualifying examination or serve on the committee. The qualifying examination will be administered in the summer of the first year.

The student will be given a list of questions covering topics from core and required advanced courses. The student will be given 1 hour of preparation time to review the questions and select a specified number of questions upon which the student will be examined. The student will address the selected topics as well as any questions from the committee that may arise from the question-and-answer session.

CBTS Oral qualifying Examination Procedures and Evaluation Rubrics are available on the [CBTS Forms and Guidelines website](#). Successful completion of the oral qualifying exam will be determined by the committee. If unsuccessful on the first attempt, a student may be allowed to retake the examination. The second examination should be completed within twelve weeks of the original examination, unless otherwise specified by the examination committee. If unsuccessful on the second attempt, the student may be allowed to transfer to the MS degree program to complete the requirements for the MS degree.

B. Research Proposal

The research proposal is a detailed outline of the dissertation project. It must include a summary of the proposed project, the hypothesis and aims to be investigated, significance and innovation of the project, research design and methodology to be used, a review of the salient literature that supports or opposes the hypothesis, and potential limitations. To take advantage of the advisory committee's expertise and advice, and to clearly define the project and the committee's expectations, it is imperative that the student meet with their advisory committee before preparing the research proposal. **The research proposal should be provided to the advisory committee no later than 14 days prior to the defense.** The formal presentation of the research proposal will be to a general audience, while the defense of the research proposal will only be to the members of the student's advisory committee. The research proposal must be approved by the advisory committee and the Dean prior to registering for Dissertation (BMSC 6395). It is expected that PhD students will complete their Research Proposal no later than the summer of year 2. Research Proposal Procedures, Evaluation Rubrics, and Notice of Research Proposal Seminar and Defense are available on the [CBTS Forms and Guidelines website](#).

Once a PhD student has advanced to candidacy (completed the oral qualifying exam and research proposal milestones) they are able to enroll in a minimum of 6 SCH per semester; however, at least 2 of the 6 SCH must be in BMSC 6395 (Doctoral Dissertation). Once a PhD candidate submits the "Declaration of Intent to Graduate" Form, they can enroll in a total of 3 SCH of Doctoral Dissertation in the semester in which they will defend their dissertation (the final semester of enrollment). When the time comes, important dates, instructions and forms for graduation can be found on the [CBTS Graduation Information Webpage](#).