

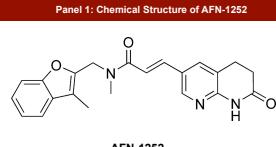
Oral Pharmacokinetics and Efficacy of AFN-1252 in a Murine Septicemia Infection Model with *S. aureus*

W. J. WEISS¹, B. HAFKIN², N. KAPLAN², M. PULSE¹, P. NGUYEN¹, P. RENICK¹, J. SIMECKA¹¹UNT Health Science Center - Preclinical Services, Ft. Worth, TX, ²Affinum Pharmaceuticals, Toronto, Canada

Abstract

Background: AFN-1252 (AFN), a novel antibiotic inhibitor of the bacterial fatty acid biosynthesis pathway (spirofuran), is a new drug candidate for the possible oral multi-drug resistant staphylococcal infections. We now present data evaluating the efficacy of AFN in murine septic infections, the pharmacokinetics (PK) and oral efficacy of AFN were determined in a murine septicemia model. **Methods:** For the PK and efficacy studies, Female CD-1 mice were administered escalating single oral doses of AFN in either carboxymethylcellulose (CMC) or Poloxamer (PLX). Plasma samples were analyzed by LCMS and PK parameters determined. Female CD-1 mice were infected with a bacterial inoculum of *S. aureus* Smith resulting in the death of all animals within 24 hr. A single dose of AFN or Linezolid (LNZ) was administered 30 min post-infection and survival ratios were determined at 7 days. ED₅₀ determination by Probit analysis. **Results:** The PLX formulation achieved 2x higher exposure of AFN than the equivalent doses in CMC. At doses of 0.3 - 1 mg/kg C_{max} values were 63 - 106 ng/mL in the CMC formulation and 154 - 304 ng/mL for PLX. The AUC₀₋₇ values in CMC and PLX were 224 - 456 and 367 - 1030 ng·hr/mL, respectively. AFN administration resulted in survival of all animals at doses \geq 3 mg/kg. AFN-1252 exhibited 15-20 times greater efficacy than LNZ by the oral route. AFN-1252 ED₅₀ of 0.29 mg/kg and 0.15 mg/kg in CMC and PLX, respectively. LNZ exhibited an ED₅₀ of 3.6 mg/kg. Modeling AFN dose vs AUC showed that similar AUC₀₋₇ values of 204.5 ng·hr/mL and 203 ng·hr/mL were observed at the ED₅₀ for CMC and PLX, respectively. **Conclusion:** Plasma levels of AFN following oral administration can be enhanced based on formulation. Oral AFN is highly effective in the lethal *S. aureus* murine septicemia model and exhibits much greater efficacy than LNZ. These data support the potential utility of AFN as a therapeutic treatment for bacterial bloodstream infections.

Introduction


The incidence as well as prevalence of MRSA continues to rise with 60-70% of all *S. aureus* strains from infections being multi-drug resistant MRSA. Concerns have been accelerated when MRSA isolates begin to appear in the community setting including day care facilities, athletic teams, prison populations and the military. Coupled with both vancomycin and fluoroquinolone resistance, hospital isolates and the MRSA strains are becoming increasingly resistant to both. Farnesyl Acyl-Protein (Farnesylase) catalyzes the last step in the FASII chain elongation cycle and is essential for bacterial growth and survival. AFN-1252 was optimized against staphylococcal Farnesyl, and by inhibiting this enzyme, disrupts fatty acid biosynthesis thereby inhibiting growth. It exhibits potent activity against MRSA strains with no cross resistance and a low frequency of resistance due to this novel mechanism of action.

The current study was performed to evaluate the efficacy of AFN-1252 following oral administration in a mouse septicemia model with *S. aureus*.

Methods and Materials

Mice: Female 5 - 6 week old CD-1 mice (18-22 gm) were used in the studies. **Acute Lethal Infection:** Mice were infected by injecting 0.5 ml of a suspension of a prednisolone *S. aureus* Smith bacterial inoculum (10⁸ CFU/g) in the gastric lumen. The bacterial inoculum was equivalent to 10 - 100 D₅₀s of the specific infecting strain and resulted in the death of the non-treated control animals within 24 - 48 hrs. Antibacterial doses of AFN-1252 were prepared in both aqueous 0.5% carboxymethylcellulose and an aqueous 1% Poloxamer 407 formulation. Linezolid stock solution was diluted in 5% dextrose water and was used as the positive control. All in tests Compounds were administered as a single oral dose 30 min post-infection. Animals were monitored for 24 hr post-administration. A census of survivors was taken and the results of these tests were used for the determination of the median effective dose (ED₅₀) using a computerized program for Probit analysis.

Pharmacokinetics: The pharmacokinetics of AFN-1252 were determined at 3 different dose levels (0.3, 0.6 and 1 mg/kg) for both the 0.5% CMC and 1% Poloxamer 407 formulations. The compound was prepared at equivalent concentrations in both formulations and administered by oral gavage (comparable to efficacy study concentrations and dose volumes). Blood was collected by cardiac puncture at 0.25, 0.5, 1, 2, 4, 6, 8, 10 and 24 hrs into Na-heparin tubes (3 ml/animal, collected individually), stored on ice and centrifuged to collect plasma. Plasma samples were analyzed by LCMS.

Panel 2: Minimum Inhibitory Concentration (MIC) for AFN-1252 and Selected Agents Against *S. aureus* Smith

Compound	MIC (ug/mL)
AFN-1252	0.004
Linezolid	1
Ciprofloxacin	0.125
Erythromycin	1
Penicillin	0.0625
Gentamicin	2
Vancomycin	1

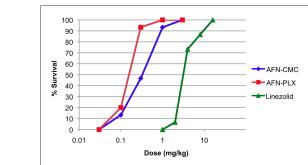
➤ Microtiter broth MICs were performed in accordance with CLSI guidelines.

➤ AFN-1252 exhibited potent activity against *S. aureus* Smith and was 15-20 times more active than all other agents tested, including Linezolid and Vancomycin.

Panel 3: Pharmacokinetics of AFN-1252 Following Oral Administration in 0.5% Carboxymethylcellulose and 1% Poloxamer Formulations to Female CD-1 Mice

Time (hrs)	0.5% CMC		1% Poloxamer		
	0.3 mg/kg	0.6 mg/kg	1 mg/kg	0.3 mg/kg	0.6 mg/kg
0.25	62.7	78.5	96.6	60.8	173
0.5	39.3	120	104	154	196
1	19.8	66.9	105	115	263
2	17.7	20.8	49.8	30.7	93.6
4	20.3	21.2	23.4	18.8	130
6	21.8	16.6	28.7	30.5	61.2
8	16.4	38.7	41.8	22.5	57.8
10	19.5	18.5	53.2	25.5	47.7
C _{max} (ng/mL)	62.7	120	106	154	304
T _{max} (hr)	0.25	0.5	1	0.5	1
AUC ₀₋₇ (ng·hr/mL)	224.1	329.5	458.4	366.9	805.6
AUC ₀₋₇ (ng·hr/mL)	361.1	379.6	nd	534.5	1402.2
MRT (hr)	9.2	5.2	nd	7.7	9.8

➤ Poloxamer (Pluronic F127; Polyoxyethylene-Polyoxypropylene Block Copolymer) and carboxymethylcellulose (1500 cps) formulations of AFN-1252 achieve different overall plasma exposure following oral administration.


➤ Both the observed C_{max} and AUC exposure obtained with the Poloxamer formulation were 3x higher than that achieved with the carboxymethylcellulose formulation of AFN-1252.

➤ The Time to C_{max} (T_{max}) and mean residence time (MRT) for both formulations were comparable.

Panel 4: Oral Efficacy of AFN-1252 in Two Formulations Against *S. aureus* Smith in the Murine Septicemia Model

Compound	ED ₅₀ (mg / kg)	95% Conf. limits
AFN-1252 : CMC	0.29	0.21 - 0.39
AFN-1252 : PLX	0.15	0.11 - 0.21
Linezolid	3.6	2.8 - 4.7

LD₅₀ = 5.07 x 10³

➤ AFN-1252 exhibits excellent *in vivo* efficacy against *S. aureus* in the mouse acute lethal septicemia model with oral ED₅₀ values that were 12 - 24 times lower than Linezolid.

Panel 5: Comparison of AFN-1252 Formulation Pharmacokinetics and Efficacy in the Mouse Septicemia Model

ED₅₀ Formulation Comparison - ED₅₀ and Corresponding Plasma AUC

Parameter	CMC	PLX
ED ₅₀ (mg/kg)	0.29	0.15
AUC ₀₋₇ (ng·hr / mL)	204.5	203.0

➤ Analysis of AFN-1252 plasma levels demonstrated that although the AFN-1252 oral ED₅₀ for the PLX formulation was 2-fold lower than the CMC formulation, total plasma exposure (AUC) at the ED₅₀ value for both formulations was equivalent.

Contact:
Unt Health Science Center
4225 Bishopton Ave, Suite 800
Toronto, Canada M3X 1Y9
www.untsc.ca
JNT Health Science Center
Fort Worth, TX 76107
www.jnt.unt.edu/jntclinical

Summary

- The Poloxamer formulation of AFN-1252 achieved 2x higher plasma exposure following oral administration than the equivalent doses formulated in methylcellulose.
- At doses of 0.3 - 1 mg/kg, C_{max} values were 63 - 106 ng/mL in the CMC formulation and 154 - 304 ng/mL for PLX.
- The AUC₀₋₇ values in CMC and PLX were 224 - 458 and 367 - 1030 ng·hr/mL, respectively.
- In the acute lethal septicemia infection model with *S. aureus*, AFN-1252 exhibited ED₅₀s of 0.29 mg/kg and 0.15 mg/kg in CMC and PLX formulations, respectively, while LNZ exhibited an ED₅₀ of 3.6 mg/kg.
- Modeling of AFN-1252 dose vs AUC showed that similar AUC₀₋₇ values of 204.5 ng·hr/mL and 203 ng·hr/mL were observed at the calculated ED₅₀ values for CMC and PLX formulations, respectively.

Conclusion

- Plasma levels of AFN-1252 following oral administration can be enhanced based on formulation.
- Oral AFN-1252 is highly effective in the lethal *S. aureus* murine septicemia model and exhibits much greater efficacy than LNZ, supporting the potential utility of AFN-1252 as a therapeutic treatment for bacterial bloodstream infections.


References

- 1) Biosafety in Microbiological and Biomedical Laboratories, CDC web site (04/01/02) <http://www.cdc.gov/riskgroups/index.htm>
- 2) Cleland, R. and E. Squires. 1991. Evaluation of New Antimicrobials in Vitro and in Experimental Animal Infections. In *Antibiotics in Laboratory Medicine*, 3rd. ed., edited by Victor Lorian, Williams and Wilkins Baltimore, Maryland, pp. 752 - 783.
- 3) Guidelines for the Welfare of Animals in Rodent Protection Tests (Lab Animals, 1994) 24: 1-10.
- 4) Sakuma, M. 2005. *Pro/Probit*, 1.63 ed. Kyoto, Japan.
- 5) Sakuma, M. 1998. Probit analysis of preference data. *Appl. Entomol. Zool* 33:339-347.
- 6) Frimodt-Møller, N., J. D. Knudsen, and F. Esperersen. 1999. The Mouse as a Model for Malaria. p. 127-136. In O. Zák, C. Carbon, B. Fanlin, T. O'Reilly, R. Kaminsky, and E. Korn (ed.), *Handbook of Animal Models of Infection*. Academic Press, London.

Acknowledgments

This study was funded and supported by Affinum Pharmaceuticals, Toronto, Canada. The authors would like to acknowledge Jessica Pearce and Maciej Kukula of UNTHSC for technical assistance and MPI Research, Matawan MI for analysis of plasma samples.

Effect of the formulation on the pharmacokinetics of AFN-1252 following oral administration in female CD-1 mice

