

Pharmacodynamic Evaluation of TP-271, a novel Fluorocycline, in a Neutropenic Murine Lung Model Infected with *Streptococcus pneumoniae*

54th ICAAC Meeting
Washington, DC
September 5-9, 2014

T. M. Murphy¹, W. J. Weiss¹, M. Pulse¹, J. A. Sutcliffe², T. H. Grossman²
¹UNT Health Science Center, Ft. Worth, TX, ²Tetraphase Pharmaceuticals, Watertown, MA

Contact:
Melissa Shamgochian
Tetraphase Pharmaceuticals, Inc.
mshamgochian@tphase.com

Abstract

Background: TP-271 is a novel fluorocycline that is currently in preclinical development for the treatment of respiratory infections caused by susceptible and resistant pathogens including *S. pneumoniae*. We utilized a neutropenic mouse lung infection model to assess the pharmacokinetics (PK) and efficacy of TP-271 against 3 *S. pneumoniae* clinical isolates.

Methods: For all studies female CD-1 mice were rendered neutropenic through two intraperitoneal doses of cyclophosphamide, 150 and 100 mg/kg on Day -4 and Day -1, respectively. Mice were infected via intranasal inoculation under anesthesia with 10⁵ colony forming units (CFUs) in 0.05 mL. TP-271 was administered at 12 hours post-infection. PK was performed in infected mice with plasma and epithelial lining fluid (ELF) collected following single IV doses ranging from 0.25 – 20 mg/kg. A urea correction was performed on the ELF samples. Dose fractionation studies were performed with dosing intervals at q24h, q12h and q6h. CFUs were determined in lung at the beginning of therapy and 24 hours later. PK parameters were determined using PK Solutions™ and PK-PD analysis was performed using GraphPad Prism. Protein binding was determined by rapid equilibrium dialysis.

Results: The following table summarizes the results:

<i>S. pneumoniae</i> strain:	UNT039-2	UNT040-2	UNT043-2
Phenotype:	Macrolide-R, Fluoroquinolone-R, Tetracycline-S	Tetracycline-S	Penicillin-R, Macrolide-R, Tet(M), Tet(O)
TP-271 MIC (µg/mL)	0.001	0.002	0.001
fAUC (µg·hr/mL) for Stasis in plasma / ELF	1.4 / 3.7	5.0 / 13.0	0.4 / 1.1
fAUC/MIC _{ELF} (R ²)	0.69	0.62	0.73
fAUC/MIC _{ELF} (R ²)	0.69	0.76	0.73
fC _{max} /MIC _{ELF} (R ²)	0.74	0.49	0.64
fC _{max} /MIC _{ELF} (R ²)	0.74	0.58	0.64

The f%T-MIC parameter for all 3 strains demonstrated R² values < 0.5 for both plasma and ELF. The fAUC for TP-271 required to achieve a static effect in both plasma and ELF was 0.4 – 13.0 µg·hr/mL. Protein binding of TP-271 was higher in plasma than in ELF with a greater % free drug at lower TP-271 concentrations.

Conclusions: TP-271 demonstrated potent efficacy in the murine pneumonia model against all three *S. pneumoniae* tested. For two strains (UNT040-2 and 043-2) the fAUC/MIC for plasma and ELF was the predominant PK/PD indicator of efficacy. For UNT039-2, the fAUC/MIC and fC_{max}/MIC were comparable. These results should enable dose selection of TP-271 in future clinical studies for bacterial pneumonia.

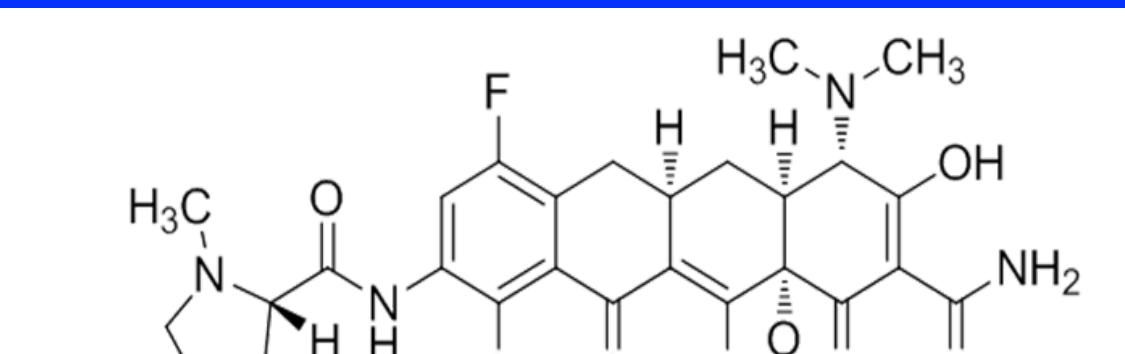
Introduction

TP-271 is a novel fully synthetic fluorocycline antibiotic that is currently in preclinical development for oral / IV therapy against complicated community-acquired bacterial pneumonia. TP-271 has demonstrated excellent activity against both Gram positive and Gram negative isolates associated with respiratory tract infections. TP-271 maintains antimicrobial activity in strains that express the most common tetracycline-specific resistance mechanisms (efflux and ribosomal) as well as Tet(X) inactivating enzyme. The purpose of these PK/PD studies is to elucidate which parameter best describes the pharmacodynamics of TP-271 to aid in dose selection and regimen for clinical development.

Methods and Materials

In vitro MICs: Minimum inhibitory concentrations of all isolates were performed according to CLSI standards using broth micro-dilution method.

Animals: CD-1 female mice (weighing 18 – 22 grams) from Harlan (Indianapolis, IN) were acclimated for 48 hours prior to start of study. All studies were performed under approved IACUC protocols. Animals had free access to food and water throughout the study.


Neutropenia induction: mice were rendered neutropenic with two consecutive IP doses of cyclophosphamide (Cytosan) of 150 and 100 mg/kg on 4 and 1 days prior to infection, respectively.

Inoculum preparation and infection: Infection inoculums were prepared from over night growth plates of *S. pneumoniae* strains. The isolates were resuspended in sterile saline and a predetermined density and further diluted in saline to achieve the infecting inoculum. Mice were anesthetized with an IP injection of Ketamine and xylazine. The prepared bacterial suspension was delivered in a 50 µL aliquot intranasally and the mice were returned to their cages to recover from the anesthesia.

Pharmacokinetics: TP-271 was delivered as a single intravenous injection over 5 selected dose concentrations. At 8 predetermined time points, 5 mice per time point were euthanized via CO₂ inhalation with blood collected for plasma and BAL (bronchial alveolar lavage) performed to collect ELF (epithelial lining fluid). Both plasma and ELF were analyzed for drug level concentrations. PK parameters were determined using PK Solutions™ software. Urea concentrations were determined on ELF samples using a blood urea nitrogen kit (QuantiChrom) and urea correction was included with the final PK analysis.

Dosing studies: Mice received a single dose of TP-271 over 5 selected concentrations via intravenous injection beginning at 12 hours post infection. Twenty-four hours after the start of dosing, mice were euthanized via CO₂ inhalation with lung aseptically removed. CFUs were determined after homogenizing, serial dilution, plating on bacterial growth media and over night incubation. An additional group of lungs were collected at start of treatment to serve as start of therapy controls. The total dose was also split and delivered both as a q12 hour and q6 hour dose regimen in order to elucidate the PD parameters. GraphPad Prism software was employed to determine which PK/PD parameter fits best in both plasma and ELF.

Chemical Structure TP-271

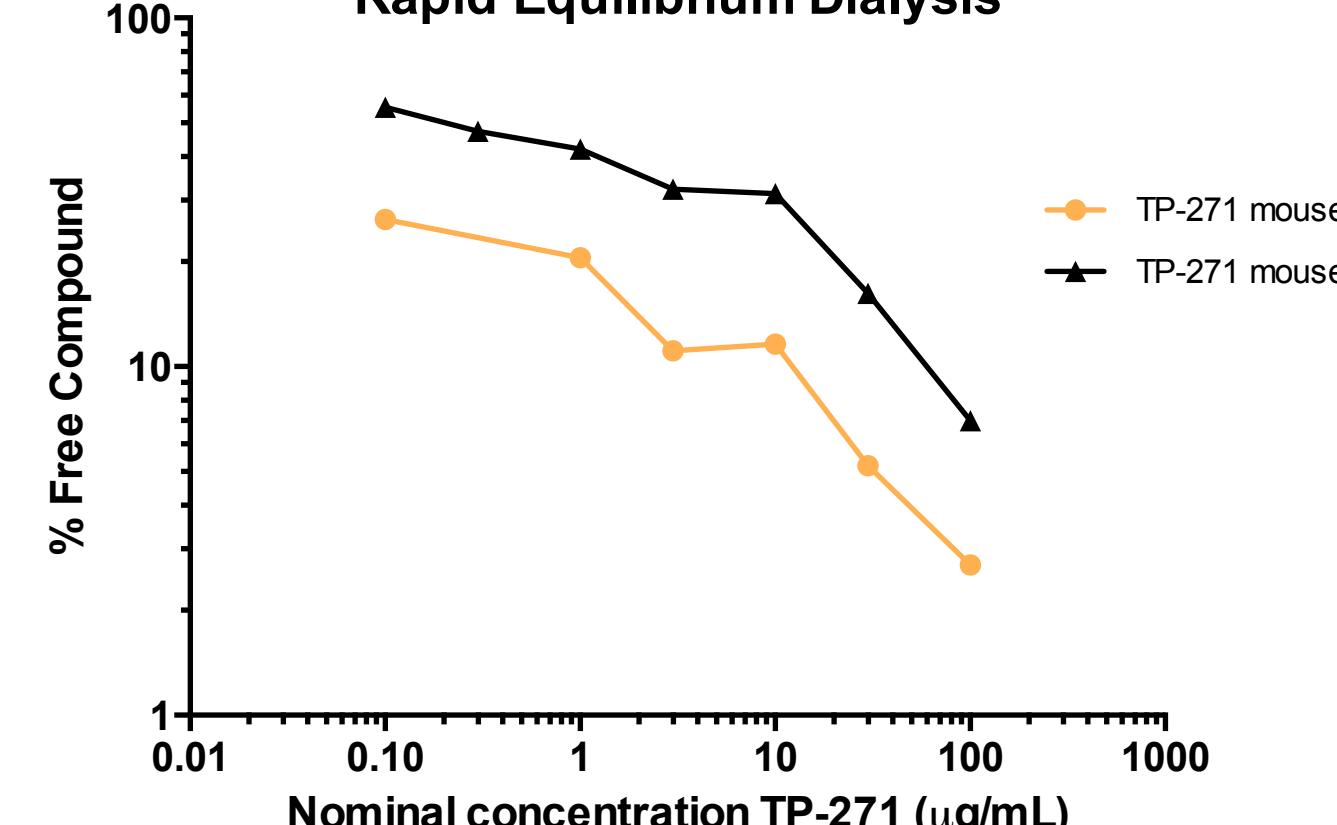
TP-271 Minimum Inhibitory Concentration (MIC)

UNT Strain Designation	Tetraphase Strain Designation	Phenotype ¹	MIC (µg/mL)	MIC (ng/mL)
UNT039-2	SP1517	MACRO-R, FQ-R, TET-S	0.001	1
UNT040-2	SP514	TET-S	0.002	2
UNT043-2	SP1579	PEN-R, MACRO-R, Tet(M), Tet(O)	0.001	1

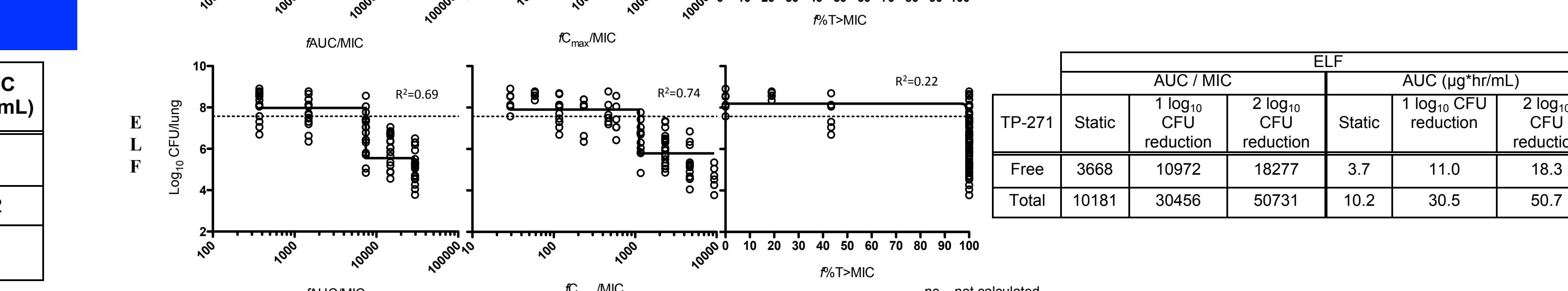
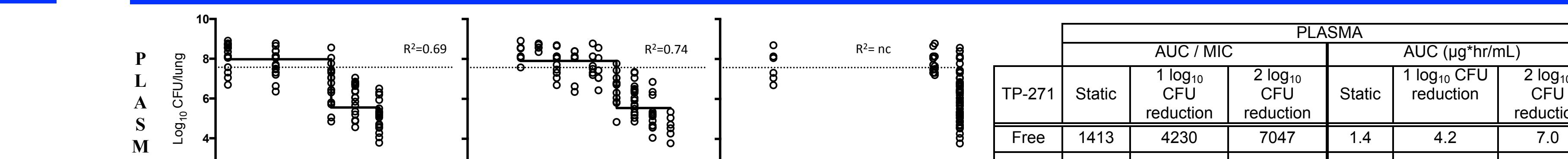
¹TET-S, tetracycline-sensitive; PEN-R, penicillin-R; MACRO-R, macrolide-resistant; FQ-R, fluoroquinolone-resistant

Pharmacokinetics of TP-271 Following Intravenous Administration to Female CD-1 Mice

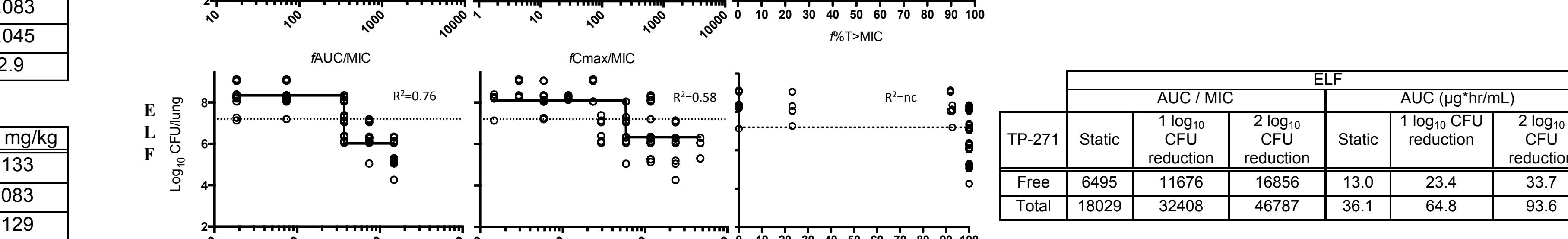
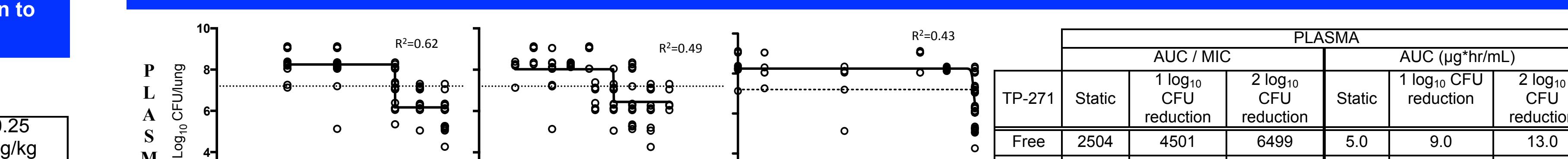
Single dose PK for free TP-271 in Plasma

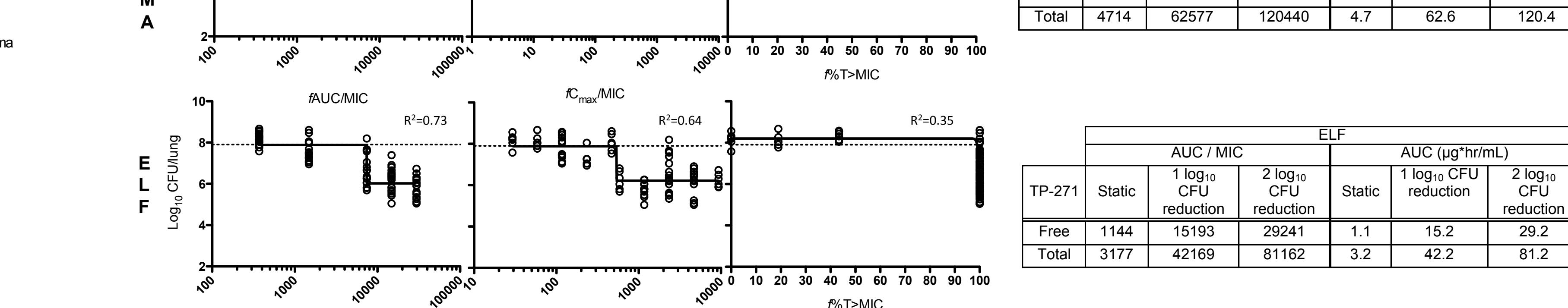
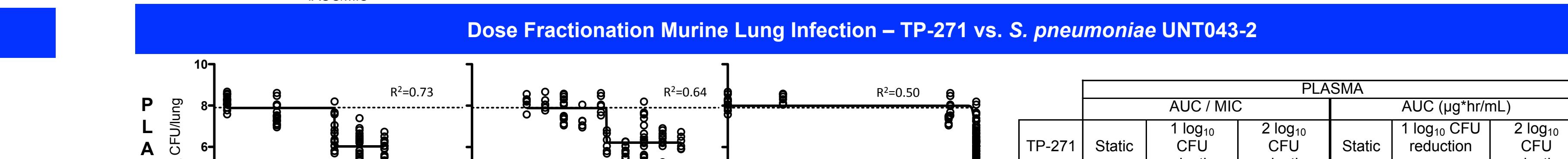

Parameter	20 mg/kg	10 mg/kg	5 mg/kg	1 mg/kg	0.25 mg/kg
C _{max} (µg/mL)	2.205	1.722	0.716	0.107	0.018
T _{max} (hr)	0.083	0.083	0.083	0.083	0.083
AUC 0-t (µg·hr/mL)	11.416	5.858	2.739	0.288	0.045
Half-life (hr)	5.1	5.7	5	5.5	2.9

Single dose PK for free TP-271 in ELF



Parameter	20 mg/kg	10 mg/kg	5 mg/kg	1 mg/kg	0.25 mg/kg
C _{max} (µg/mL)	9.948	3.752	1.835	0.479	0.133
T _{max} (hr)	0.083	0.083	0.083	0.083	0.083
AUC 0-t (µg·hr/mL)	30.539	13.930	5.849	0.949	0.129
Half-life (hr)	5.419	5.946	5.18	3.338	6.544

Protein Binding Determination – TP-271



TP-271 protein binding in mouse ELF vs plasma by Rapid Equilibrium Dialysis



Dose Fractionation Murine Lung Infection – TP-271 vs. *S. pneumoniae* UNT039-2

Dose Fractionation Murine Lung Infection – TP-271 vs. *S. pneumoniae* UNT040-2

Dose Fractionation Murine Lung Infection – TP-271 vs. *S. pneumoniae* UNT043-2

