

110th General Meeting
San Diego, CA
May 23-27, 2010

Efficacy of Topical and Systemic Antibiotics in a Mouse Superficial Skin Infection Model with *Staphylococcus aureus*

M. E. PULSE*, P. NGUYEN, J. PIERCE, P.J. RENICK, W. J. WEISS, J. W. SIMECKA
UNT Health Science Center, Ft. Worth, TX

A-2969

Abstract

Background: Due to the continued need to thoroughly evaluate new antimicrobials for skin-associated infections, a mouse superficial skin infection (MSSI) model was developed in our lab to determine the efficacy of antibiotic agents against *Staphylococcus aureus* skin-associated infections. Here we describe the evaluation of both topical and systemic antibiotics in this disease model of skin infection.

Methods: The MSSI model was created by mincing shaved and mechanically abraded skin within the sub-scapular region. After a slightly reddened area was generated, 5.0 log₁₀ CFU (colony-forming units) of *S. aureus* was inoculated onto the abraded site. Treatment was initiated immediately with either topical or systemic antibiotics, and treatment was continued twice daily for 3 additional days. Abraded skin sections were excised, washed, homogenized, and plated for CFU recovery 18 to 20 hours after the final treatment. Mean CFU counts of treated and untreated control groups were determined and compared to each other.

Results: The CFU counts of abraded skin sections from untreated control groups increased from 3.4 log₁₀ CFU at 4 hours post-inoculation to 6.3 log₁₀ CFU after 4 days. When treated with Bactroban (2% mupirocin) yielded mean log₁₀ CFU reductions greater than 4.0, while intraperitoneal (i.p.) doses of Vancomycin at 25, 75, 150 mg/kg reduced mean log₁₀ CFU counts by 1.3, 2.0, and 2.3, respectively. 50 mg/kg reduced the log₁₀ CFU skin-section counts by 1.3, 2.0, and 2.3, respectively. While i.p. doses of Linezolid at 10 to 20 mg/kg produced mean log₁₀ CFU reductions that were less than 0.5.

Conclusion: The MSSI model clearly differentiate the efficacy of each antibiotic tested, but it also produced observable dose responses for Vancomycin and Tigecycline. These results demonstrate that the MSSI model can be used in evaluating and comparing both topical and systemic antibiotics for skin-associated infections.

Introduction

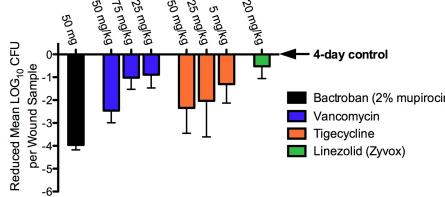
Staphylococcus aureus is an important bacterial pathogen capable of causing various types of diseases in humans and other animals. Skin-associated pathogens, the facultative, commensal, and opportunistic, are the most common types of diseases caused by *S. aureus*, and therapeutic options that are available for treating skin and soft-tissue clinical infections (SSTIs) have been significantly impacted due to the increased prevalence of methicillin-resistant *S. aureus* (MRSA) associated with nosocomial and community infections. Infection caused by community-associated MRSA (CA-MRSA) have become an epidemic within the US where the USA 300 strain is the most common cause of community-acquired, staphylococcal SSTIs (2, 4). Like hospital-acquired MRSA, CA-MRSA is more virulent than the S. aureus reference strain (5). CA-MRSA is considered to be more pathogenic than HA-MRSA, which is thought to be the result of a combined expression of several virulence factors that includes a cytolytic protein identified as the Panton-Valentine leukocidin (PVL) factor, which is associated with the increased virulence and enhanced virulence, combined with the current epidemic situation within the US, point to the fact that new and/or improved therapeutic options are needed to treat CA-MRSA infections.

At the end of the day, the best way to treat staphylococcal SSTIs, a mouse superficial skin infection (MSSI) model was developed by our lab to evaluate the relative efficacy of topical and systemic antibiotics against *S. aureus* skin infections. Here we describe the evaluation of a topical and three systemic antibiotics against a methicillin-susceptible *S. aureus* (MSSA) strain and a CA-MRSA strain (USA300).

Methods and Materials

Bacteria: *Smith* was our MSSA strain and *NR5886* (USA300, PVL+) was the CA-MRSA strain used in the MSSI studies. Overnight (>18 hours) plate cultures of each strain were used to generate the inocula for MSSI studies and minimum inhibitory concentration (MIC) assays.

Minimum inhibitory concentrations (MICs): MICs were determined for Vancomycin, Tigecycline, and Linezolid (Zyvox) against the MSSA and CA-MRSA strains using the microdilution method as described by the Clinical and Laboratory Standards Institute (CLSI). Briefly, the three antibiotics were two-fold serially diluted in cation-adjusted Mueller-Hinton broth (Becton Dickinson) at 5.0 log₁₀ CFU/ml. 100 µL of each antibiotic was added to each drug-containing well of a 96-well plate. After overnight (>18 hours) incubation at 37°C, breakpoints were identified for each antibiotic and strain susceptibility was determined according to CLSI guidelines. The ATCC reference strain of *S. aureus* (25923) was included as the quality control for each MIC test.

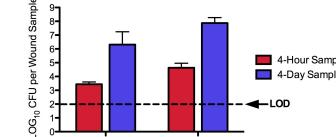

MSSI model: While under gas anesthesia (Isoflurane, 1.5% to 2.0% in 5 to 6 weeks old, female CD-1 mice), the skin was shaved and disinfected with betadine solution (7% dispersible powder) (100/100 grit) and rubbed within the disinfected region until a slight reddened and glistening wound appeared. A 10 µL volume from a 7.0 log₁₀ CFU/ml inoculum prepared for each strain was serially applied onto the abraded area of each mouse. The initial treatment was given 4 hours following infection and was continued twice daily for 3 consecutive days. Animals were euthanized 18 to 20 hours after the final antibiotic dose, and the skin abrasions were harvested, washed, homogenized and plated for CFU recovered.

Panel 1: MICs of Vancomycin, Tigecycline, Linezolid against MSSA & CA-MRSA strains

	MSSA (Smith)	CA-MRSA (USA300)
Vancomycin	1 µg/mL	0.5 µg/mL
Tigecycline	0.25 µg/mL	0.25 µg/mL
Linezolid (Zyvox)	2 µg/mL	2 µg/mL

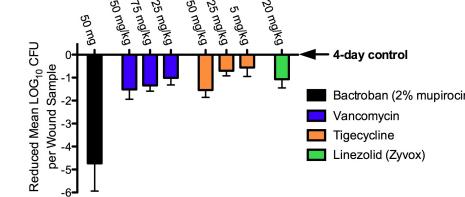
- MIC values determined by the microdilution method according to CLSI guidelines.
- ATCC, *S. aureus* reference strain 25923 was included as a quality control for each MIC test (data not shown).

Panel 3: Antibiotic Efficacy in the MSSI model against MSSA (Smith)



- Mean log₁₀ CFU reductions were determined as the difference between the mean CFU counts of untreated 4-day controls vs. antibiotic treated groups.
- Indicated doses (x-axis) represent the total amounts administered initially at 4 hours post-infection, & then continued twice daily for 3 consecutive days.
- Bactroban was topically applied, & the other antibiotics were intraperitoneally dosed.
- Error bars represent the SD of the mean reduced CFUs for each group. (n=5)

Panel 5: Treated & Untreated, Mean Log₁₀ CFU Wound Counts for Smith (MSSA) & USA300 (CA-MRSA)


	4-HR CONTROL	4-DAY CONTROL	BACTROBAN (2% mupirocin)	VANCOMYCIN (mg/kg)			TIGECYCLINE (mg/kg)			LINEZOLID (ZYVOX) (20 mg/kg)		
				150	75	25	50	25	5	5.0	2.5	1.25
SMITH (MEAN ± SD)	3.4 ± 0.16	6.3 ± 0.93	2.4 ± 0.22	3.9 ± 0.53	5.3 ± 0.51	5.4 ± 0.58	3.9 ± 1.11	4.3 ± 1.58	5.0 ± 0.83	5.8 ± 0.54		
USA300 (MEAN ± SD)	4.6 ± 0.33	7.9 ± 0.4	3.2 ± 1.21	6.4 ± 0.43	6.5 ± 0.25	6.9 ± 0.31	6.3 ± 0.32	7.2 ± 0.22	7.3 ± 0.39	6.8 ± 0.38		

Panel 2: Growth of MSSA (Smith) & CA-MRSA (USA300) in the MSSI model

- CFU counts recovered from wounded skin samples at 4 hours & 4 days post-infection.
- Skin homogenates were plated onto selective (mannitol salt) & non-selective media.
- Limit of detection (LOD) was 2.0 log₁₀ CFU, & error bars represent the standard deviation (SD) of the mean for each time point. (n=5)

Panel 4: Antibiotic Efficacy in the MSSI model against CA-MRSA (USA300)

- Mean log₁₀ CFU reductions were determined as the difference between the mean CFU counts of untreated 4-day controls vs. antibiotic treated groups.
- Indicated doses (x-axis) represent the total amounts administered initially at 4 hours post-infection, & then continued twice daily for 3 consecutive days.
- Bactroban was topically applied, & the other antibiotics were intraperitoneally dosed.
- Error bars represent the SD of the mean reduced CFUs for each group. (n=5)

Summary and Conclusions

• Minimum inhibitory concentration (MICs) values for Vancomycin, Tigecycline, and Linezolid (Pan) indicate that both the Smith (methicillin-susceptible *S. aureus*) and USA300 (methicillin-resistant *S. aureus*; CA-MRSA) strains were sensitive to all 3 antibiotics. These antibiotics are FDA approved agents for the treatment of *S. aureus* skin infections, and are also used by staphylococci (4), which is why they were selected for evaluation in the mouse superficial skin infection (MSSI) model. Additionally, Bactroban (2% mupirocin) served as the positive control in the MSSI studies.

• The wound-associated CFU for the MSSA strain (Smith) increased from 3.4 log₁₀ at 4 hours to 6.3 log₁₀ at 4 days post-infection, and the CFU counts for the CA-MRSA strain (USA300) increased from 2.0 log₁₀ to 7.9 log₁₀ at 4 days. These results suggest that both *S. aureus* strains are capable of producing a stable skin-associated wound infection for an extended period of time (4 days) in this model.

• For the Smith strain, a 4-day control with skin wounds inoculated with 10⁶ CFU of Bactroban cream, 1.0 to 2.4 log₁₀ at 4 days post-infection, and 10⁷ CFU of Vancomycin at 25-150 mg/kg, 1.3 to 2.4 log₁₀ with 7.1 p. doses of Tigecycline at 5 - 50 mg/kg, 1.1 log₁₀ with 7.1 p. doses of Linezolid (Zyvox) at 20 mg/kg.

• As compared to the Smith strain, the USA300 strain (NR5886) appears to have an enhanced ability to generate an infection with greater severity in this model, which may have negative impacts on the efficacy of the antibiotics. Tigecycline at 50 mg/kg (Pan) was 3.2 to 3.4. This may be attributable to this strain being positive for the Panton-Valentine leukocidin (PVL) factor, which has been shown to play a key role in the progression of certain staphylococcal infectious diseases (4).

• Dose responses were limited in this model for both *S. aureus* strains. Additionally, dose-dependent responses to antibiotics were not observed in this model. This may indicate that the MSSI model can be a valuable tool for evaluating new and current agents (systemic or topical) for the treatment of staphylococcal skin and soft tissue infections (SSTIs).

References

1. Gruppuso H, Arreaga-Sousa M, Boyce J. Tackling *E. coli* in the public health threat. *Lancet* 2006; 368:674 - 85.
2. King MD, Humphrey BJ, Wang YF, Kourbatova EV, Ray SM, Blumberg HM. Emergence of CA-MRSA USA 300 clone as the predominant cause of skin and soft-tissue infections. *Ann Intern Med* 2006; 144:388 - 94.
3. Li M, Diao BA, Villaruz AE, Broughton KR, Jiang X, DeLeo FR, Chambers HF, Li Y, Otto M. Evolution of virulence in epidemic CA-MRSA. *PNAS* 2009; 106(14):5883 - 8.
4. Stylianos ME, Chambers HF. Skin and soft-tissue infections caused by community-associated methicillin-resistant *Staphylococcus aureus*. *Arch Intern Med* 2008; 168:888 - 97.
5. Tereser FC, McDougal LK, Goering RV. Characterization of a strain of CA-MRSA widely disseminated in the United States. *J Clin Microbiol* 2006;44:108 - 18.

Acknowledgments

The authors would like to thank Kelly Peterson for his technical support on this project.